GTESI Mapping to Foundational Frameworks

April 14, 2025

1. Maxwell's Equations \rightarrow GTESI Field Persistence & Curvature Flow

Traditional View: Maxwell's equations govern the dynamics of electric and magnetic fields — their generation by charges and currents, and how they propagate as electromagnetic waves.

GTESI View: The electromagnetic field is a 3D projection of rotating vector alignments in the 5D condensate. Electric and magnetic fields arise from projected vector curvatures:

- Electric field → radial curvature strain (resistance to condensate inflow)
- Magnetic field \rightarrow rotational coherence (flow alignment)
- Wave propagation in Maxwell = curvature coherence propagation in GTESI.

Key Mapping:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
 Charge density is curvature pressure from condensate impinging on a boundary
$$\nabla \cdot \mathbf{B} = 0$$
 No magnetic monopoles = curvature cannot terminate in spin-locked state
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 Electric field curl is induced by change in curvature alignment
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
 Magnetic field emerges from curvature flow of energy-rate (processing dynamics)

2. Bose-Einstein Condensate \rightarrow GTESI Coherence Domain

Traditional View: BEC is a state where multiple bosons occupy the same quantum ground state — exhibiting coherence and macroscopic quantum phenomena.

GTESI View: Coherence = alignment of curvature vectors across a local region. When vectors are aligned, resistance drops, and information persists longer.

Mapping:

- \bullet Ground State \to Minimum-resistance vector configuration in 5D curvature field
- Macroscopic Coherence \rightarrow Region of aligned vector flow in 3D = persistent structure
- \bullet Critical Temperature \to Temperature at which curvature coherence decays

3. Feynman & QED \rightarrow GTESI Probabilistic Flow Evaluation

Traditional View: Particles take all paths; amplitudes are summed to compute probability.

GTESI View: All potential curvature paths exist in the 5D condensate. The path of least resistance is selected thermodynamically.

Mapping:

$$\sum e^{iS/\hbar} \to \text{Vectorial evaluation of curvature coherence in 5D}$$
 Probability amplitude \to Resistance-weighted curvature persistence score Interference \to Competing projection pathways from 5D pressure

4. Einstein $(E = mc^2) \rightarrow \mathbf{GTESI}$ Processing Identity

GTESI View: Mass is a record of curvature persistence. Energy is the rate of curvature processing. Space expansion arises from reduced processing rates.

$$m = \frac{E}{S}$$
 where $S = \text{Entropy surface (processing inefficiency)}$

$$E = m \cdot S = \text{Rate} \cdot \text{Resistance}$$

Toward a GTESI Master Equation

$$\mathcal{P} = \frac{d\kappa}{dt} \cdot R = E$$

Where:

- \mathcal{P} = Persistence rate
- $\frac{d\kappa}{dt}$ = rate of curvature change (rotational processing)
- R = resistance (space, entropy)
- E = energy flow (rate of processing capacity)